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Arsenic-containing hydrocarbons have been identified for the

first time as natural components of fish oil.

The study of naturally occurring arsenic compounds has both

chemical interest, because of the novelty of the compounds

present, and human health interest because the arsenicals

occur in many common foods. The highest arsenic concentra-

tions are found in seafoods, and many studies have reported

on the type of arsenic compounds present in such foods.1 The

vast majority of this work has dealt with water-soluble com-

pounds and it is only recently that structures have been

reported for lipid-soluble species (arsenolipids), namely

dimethylarsinoyl fatty acids found in cod liver oil.2 We now

report the isolation from a fish oil of three arsenic-containing

hydrocarbons; surprisingly these compounds contain the

equivalent of an even number of carbon atoms which raises

intriguing questions about their biogenesis.

Major arsenic compounds in oil from the plankton-feeding fish

capelin (Mallotus villosus) from the north Atlantic were isolated by

solvent partitioning, preparative ion-exchange chromatography,

and reversed-phase HPLC.3 High resolution accurate mass spec-

trometry,4 performed on the purified HPLC fractions, showed the

presence of three arsenic compounds with the following molecular

formulae: C17H37AsO (calcd for [M + H]+ 333.2134; found

333.2139; Dm = 1.5 ppm); C19H41AsO (calcd for [M + H]+

361.2446; found 361.2450; Dm=1.1 ppm); C23H37AsO (calcd for

[M + H]+ 405.2134; found 405.2149; Dm = 3.7 ppm). These

mass spectrometric data, together with the chromatographic

properties of the compounds, indicated that the arsenic was

present as a homologous pair of dimethylarsinoyl-alkanes and

a dimethylarsinoyl-alkene possessing six double bonds

(Fig. 1). We synthesized compound A,5 and showed that the

chromatographic and mass spectrometric properties of the

synthesized product were identical with those of the natural

product, thereby confirming the assignment for compound A,

and, by analogy, for its homolog compound B. Although the

mass spectrometric data provided an essentially unequivocal

molecular formula for compound C, we cannot presently

assign the positions or geometries of the double bonds

with certainty; the compound is drawn by analogy to

all-cis-4,7,10,13,16,19-docosahexaenoic acid [DHA, 22:6

(n = 3)], the most abundant and frequently occurring

22:6 acid in fish.6 We estimate that these three compounds

constitute at least 70% of the total arsenic originally in capelin

oil; the remaining arsenic appears to comprise less polar

compounds, the structures of which are currently unknown.

All three compounds contained the equivalent of an even

number of carbon atoms. However, naturally occurring hydro-

carbons usually contain an odd number of carbon atoms

because they are derived, by overall decarboxylation7 (decarbo-

nylation of the aldehyde8) from long-chain fatty acids that

predominantly possess even-numbered carbon chains.9 This is

reflected in various environmental samples. For example, sedi-

ments contributed to by senescent microalgae contain fatty acids

with a strong predominance of even-numbered chain lengths

and also contain hydrocarbons dominated by odd chain length

compounds.10 Capelin oil is no different from other fish oils

in containing mostly long-chain fatty acids that contain an

even number of carbon atoms;11 yet the arsenic-containing

hydrocarbons reported here all contain the equivalent of even-

numbered carbon chains. This suggests either that the hydro-

carbons are formed by the loss of two carbons from a long-chain

Fig. 1 Arsenic-containing hydrocarbons identified in oil from

capelin. Assignments were based on high resolution accurate mass

spectrometry, and, for compound A, confirmed by chemical synthesis.

The position and geometry of the double bonds in compound C

were not determined; they have been assigned by analogy to

all-cis-4,7,10,13,16,19-docosahexaenoic acid [DHA, 22:6 (n = 3)], a

common fatty acid in fish.
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cMatı́s, Skúlagata 4, 101 Reykjavı́k, Iceland
w Electronic supplementary information (ESI) available: High resolu-
tion accurate mass spectra. See DOI: 10.1039/b808049f

4706 | Chem. Commun., 2008, 4706–4707 This journal is �c The Royal Society of Chemistry 2008

COMMUNICATION www.rsc.org/chemcomm | ChemComm



fatty acid,12 or that none is lost.13 The loss of two carbons in the

biosynthesis of hydrocarbons has been demonstrated for a

higher plant (Pisum sativum); one carbon is removed by

a-oxidation and the second by decarbonylation of the aldehyde

formed by reduction of the resulting carboxylic acid.12

A mechanism involving reduction of long-chain fatty acids to

hydrocarbons via the alcohols, and therefore without the loss of

any carbons, has been reported in a study using a bacterium

(Vibrio furnissii),13 although such a mechanism has never been

indicated for fish or for the algae on which they feed. Examina-

tion of the three arsenic-containing hydrocarbons against the

profile of normal fatty acids in capelin oil11 indicated that the

latter mechanism (involving no loss of carbon) is more likely

than the former. For example, DHA, 22:6, the analog of

compound C in terms of chain length and number of double

bonds is abundant in capelin oil, but acids that might yield

compound C by loss of one or two carbon atoms are absent.

Thus, DHA is the likely precursor of compound C.

Whether the arsenic-containing hydrocarbons have a func-

tion or are made through inaccuracies in biosynthetic pro-

cesses remains to be determined. Information on the fidelity of

biochemical transformations (except for those involving

nucleic acids) is sparse. The sensitivity and specificity of

analytical techniques for determining arsenic compounds

means that very small quantities of compounds, that might

even be formed essentially accidentally, can be detected and

characterized. It is, though, generally accepted that organisms,

particularly marine organisms, must biochemically modify the

arsenic that they are obliged to absorb (because of the

similarity of arsenate to phosphate) so that it cannot decouple

oxidative phosphorylation or interfere with enzyme function.

The incorporation of an arsenic-containing group into

an alkane might be thought to be the ultimate stage in a

detoxification process with the arsenic placed out of all meta-

bolic involvement. On the other hand, such molecules, with

the arsenic-containing polar head and a hydrophobic tail,

could have some specific but currently unknown membrane

function.

We will explore these questions by investigating the distri-

bution and biosynthesis of the arsenic-containing lipids in

other fish oils and in organisms, particularly in view of the

clear differences found for the two oils (cod liver and capelin)

examined so far. The human metabolism of arsenolipids will

also be of interest; the consumption of fish oils and oily fish is

encouraged by nutritionists, primarily because of the high

levels of polyunsaturated lipids that they contain.
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